Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613030

RESUMO

Black tea (BT), the most consumed tea worldwide, can alleviate hyperlipidemia which is a serious threat to human health. However, the quality of summer BT is poor. It was improved by microbial fermentation in a previous study, but whether it affects hypolipidemic activity is unknown. Therefore, we compared the hypolipidemic activity of BT and microbially fermented black tea (EFT). The results demonstrated that BT inhibited weight gain and improved lipid and total bile acid (TBA) levels, and microbial fermentation reinforced this activity. Mechanistically, both BT and EFT mediate bile acid circulation to relieve hyperlipidemia. In addition, BT and EFT improve dyslipidemia by modifying the gut microbiota. Specifically, the increase in Lactobacillus johnsonii by BT, and the increase in Mucispirillum and Colidextribacter by EFT may also be potential causes for alleviation of hyperlipidemia. In summary, we demonstrated that microbial fermentation strengthened the hypolipidemic activity of BT and increased the added value of BT.


Assuntos
Camellia sinensis , Hiperlipidemias , Humanos , Chá , Hiperlipidemias/tratamento farmacológico , Hiperlipidemias/prevenção & controle , Fermentação , Ácidos e Sais Biliares
2.
J Transl Med ; 22(1): 363, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632591

RESUMO

Interleukin-33 (IL-33), an emerging cytokine within the IL-1 family, assumes a pivotal function in the control of obesity. However, the specific mechanism of its regulation of obesity formation remains unclear. In this study, we found that the expression level of IL-33 increased in visceral adipose tissue in mice fed with a high-fat diet (HFD) compared with that in mice fed with a normal diet (ND). In vitro, we also found the expression level of IL-33 was upregulated during the adipogenesis of 3T3-L1 cells. Functional test results showed that knockdown of IL-33 in 3T3-L1 cells differentiation could promote the accumulation of lipid droplets, the content of triglyceride and the expression of adipogenic-related genes (i.e. PPAR-γ, C/EBPα, FABP4, LPL, Adipoq and CD36). In contrast, overexpression of IL-33 inhibits adipogenic differentiation. Meanwhile, the above tests were repeated after over-differentiation of 3T3-L1 cells induced by oleic acid, and the results showed that IL-33 played a more significant role in the regulation of adipogenesis. To explore the mechanism, transcriptome sequencing was performed and results showed that IL-33 regulated the PPAR signaling pathway in 3T3-L1 cells. Further, Western blot and confocal microscopy showed that the inhibition of IL-33 could promote PPAR-γ expression by inhibiting the Wnt/ß-catenin signal in 3T3-L1 cells. This study demonstrated that IL-33 was an important regulator of preadipocyte differentiation and inhibited adipogenesis by regulating the Wnt/ß-catenin/PPAR-γ signaling pathway, which provided a new insight for further research on IL-33 as a new intervention target for metabolic disorders.


Assuntos
Adipogenia , Interleucina-33 , Camundongos , Animais , Adipogenia/genética , Adipócitos/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , beta Catenina/metabolismo , Diferenciação Celular , Obesidade/metabolismo , Via de Sinalização Wnt
3.
J Hazard Mater ; 469: 133943, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452676

RESUMO

Antibiotic resistance is one of the most concerned global health issues. However, comprehensive profiles of antibiotic resistance genes (ARGs) in various environmental settings are still needed to address modern antibiotic resistome. Here, Arctic soils and representative contaminated samples from ARG pollution sources were analyzed using metagenomic approaches. The diversity and abundance of ARGs in Arctic soils were significantly lower than those in contaminated samples (p < 0.01). ARG profiles in Arctic soils were featured with the dominance of vanF, ceoB, and bacA related to multidrug and bacitracin, whereas those from ARG pollution sources were characterized by prevalent resistance to anthropogenic antibiotics such as sulfonamides, tetracyclines, and beta-lactams. Mobile genetic elements (MGEs) were found in all samples, and their abundance and relatedness to ARGs were both lower in Arctic soils than in polluted samples. Significant relationships between bacterial communities and ARGs were observed (p < 0.01). Cultural bacteria in Arctic soils had clinically-concerned resistance to erythromycin, vancomycin, ampicillin, etc., but ARGs relevant to those antibiotics were undetectable in their genomes. Our results suggested that Arctic environment could be an important reservoir of novel ARGs, and antibiotic stresses could cause ARG pollution via horizontal gene transfer and enrichment of resistant bacteria.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Solo , Bactérias/genética , Ampicilina
4.
Food Chem ; 444: 138680, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38325077

RESUMO

Fermentation durations are crucial in determining the quality of black tea flavour. The mechanism underlying the degradation of black tea flavour caused by inappropriate fermentation duration remains unclear. In this study, the taste of black teas with different fermentation durations (BTFs) was analysed using sensory evaluation, electronic tongue, and metabolomics. The results revealed significant differences in 46 flavour profile components within the BTFs. Notably, metabolites such as gallocatechin gallate, gallocatechin, and epigallocatechin were found to be primarily reduced during fermentation, leading to a reduction in the astringency of black tea. Conversely, an increase in d-mandelic acid and guanine among others was observed to enhance the bitter flavour of black tea, while 3-Hydroxy-5-methylphenol nucleotides were found to contribute to sweetness. Furthermore, succinic acid and cyclic-3',5'-adenine nucleotides were associated with diminished freshness. This study offers a theoretical foundation for the regulation of flavour quality in large leaf black tea.


Assuntos
Camellia sinensis , Chá , Chá/metabolismo , Paladar , Fermentação , Camellia sinensis/metabolismo , Metabolômica/métodos , Folhas de Planta/metabolismo
5.
Food Chem X ; 20: 100991, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144858

RESUMO

The reasons for the change in volatile metabolites and aroma of black tea during storage remain unclear. Therefore, we used HS-SPME and GC-MS methods to analyze the aroma compounds of new tea (2021) versus aged tea groups (2015, 2017, and 2019). A total of 109 volatile components were identified. During storage, 36 metabolites mainly with floral and fruity aromas decreased significantly, while 18 volatile components with spicy, sour, and woody aromas increased significantly. Linalool and beta-ionone mainly contributed to sweet and floral aromas of freshly-processed and aged black tea, respectively. Isovaleric acid and hexanoic acid mainly caused sour odor of aged black tea. The monoterpene biosynthesis and secondary metabolic biosynthesis pathways might be key metabolic pathways leading to changes in the relative content of metabolites during storage of black tea. Our study provides theoretical support for fully understanding the changes in the aroma quality of black tea during storage.

6.
Food Res Int ; 172: 113137, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689901

RESUMO

Aroma is a crucial determinant of tea quality. While some studies have examined the aroma of yellow tea, there are no reports of the difference and formation mechanism of aroma quality between yellow and green teas from the same tea tree variety. This study employed gas chromatography-mass spectrometry to investigate the difference and formation mechanism of the aroma of yellow and green tea at the omics level, based on sensory evaluation. The sensory evaluation revealed that green tea has a distinct faint scent and bean aroma, while yellow tea, which was yellowed for 48 h, has a noticeable corn aroma and sweet fragrance. A total of 79 volatile metabolites were detected in the processing of yellow and green tea, covering 11 subclasses and 27 were differential volatile metabolites. Benzoic acid, 2-(methylamino-), methyl ester, terpinen-4-ol ethanone, 1-(1H-pyrrol-2-yl-), 3-penten-2-one, 4-methyl- and benzaldehyde were characteristic components of the difference in aroma quality between green and yellow teas. Eleven volatile metabolites significantly contributed to the aroma quality of green and yellow teas, especially acetic acid, 2-phenylethyl ester, with rose and fruity aromas. KEGG enrichment analysis showed that the arginine and proline metabolism might be the key mechanism of aroma formation during green and yellow teas' processing. These finding provide a theoretical basis way for the aroma formation of green and yellow teas.


Assuntos
Odorantes , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Ésteres
7.
Foods ; 12(18)2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37761123

RESUMO

Tea is the most popular and widely consumed beverage worldwide, especially black tea. Summer tea has a bitter and astringent taste and low aroma compared to spring tea due to the higher content of polyphenols and lower content of amino acids. Microbial fermentation is routinely used to improve the flavor of various foods. This study analyzed the relationship between the quality of black tea, metabolic characteristics, and microbial communities after microbial stuck fermentation in summer black tea. Stuck fermentation decreased the bitterness, astringency sourness, and freshness, and increased the sweetness, mellowness, and smoothness of summer black tea. The aroma also changed from sweet and floral to fungal, with a significant improvement in overall quality. Metabolomics analysis revealed significant changes in 551 non-volatile and 345 volatile metabolites after fermentation. The contents of compounds with bitter and astringent taste were decreased. Sweet flavor saccharides and aromatic lipids, and acetophenone and isophorone that impart fungal aroma showed a marked increase. These changes are the result of microbial activities, especially the secretion of extracellular enzymes. Aspergillus, Pullululanibacillus, and Bacillus contribute to the reduction of bitterness and astringency in summer black teas after stuck fermentation, and Paenibacillus and Basidiomycota_gen_Incertae_sedis contribute positively to sweetness. In addition, Aspergillus was associated with the formation of fungal aroma. In summary, our research will provide a suitable method for the improvement of tea quality and utilization of summer tea, as well as provide a reference for innovation and improvement in the food industry.

8.
Anal Bioanal Chem ; 415(28): 6915-6929, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37410126

RESUMO

Arsenic (As) is one of the most concerning elements due to its high exposure risks to organisms and ecosystems. The interaction between arsenicals and proteins plays a pivotal role in inducing their biological effects on living systems, e.g., arsenicosis. In this review article, the recent advances in analytical techniques and methods of As-binding proteomes were well summarized and discussed, including chromatographic separation and purification, biotin-streptavidin pull-down probes, in situ imaging using novel fluorescent probes, and protein identification. These analytical technologies could provide a growing body of knowledge regarding the composition, level, and distribution of As-binding proteomes in both cells and biological samples, even at the organellar level. The perspectives on analysis of As-binding proteomes are also proposed, e.g., isolation and identification of minor proteins, in vivo targeted protein degradation (TPD) technologies, and spatial As-binding proteomics. The application and development of sensitive, accurate, and high-throughput methodologies of As-binding proteomics would enable us to address the key molecular mechanisms underlying the adverse health effects of arsenicals.


Assuntos
Arsênio , Arsenicais , Proteoma , Ecossistema , Arsenicais/química , Biotina/química
9.
Sci Total Environ ; 900: 165821, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37506919

RESUMO

Human exposure to arsenic via drinking water is one of globally concerned health issues. Oxidative stress is regarded as the denominator of arsenic-inducing toxicities. Therefore, to identify intracellular sources of reactive oxygen species (ROS) could be essential for addressing the detrimental effects of arsenite (iAsIII). In this study, the contributions of different pathways to ROS formation in iAsIII-treated human normal liver (L-02) cells were quantitatively assessed, and then concomitant oxidative impairs were evaluated using metabolomics and lipidomics approaches. Following iAsIII treatment, NADPH oxidase (NOX) activity and expression levels of p47phox and p67phox were upregulated, and NOX-derived ROS contributed to almost 60.0 % of the total ROS. Moreover, iAsIII also induced mitochondrial superoxide anion and impaired mitochondrial respiratory function of L-02 cells with a decreasing ATP production. The inhibition of NOX activity significantly rescued mitochondrial membrane potential in iAsIII-treated L-02 cells. Purine and glycerophospholipids metabolisms in L-02 cells were disrupted by iAsIII, which might be used to represent DNA and plasma membrane damages, respectively. Our study supported that NOX could be the primary pathway of ROS overproduction and revealed the potential mechanisms of iAsIII toxicity related to oxidative stress.


Assuntos
Arsênio , Arsenitos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Arsenitos/toxicidade , Fígado/metabolismo , Membrana Celular/metabolismo , DNA
10.
Food Chem ; 426: 136601, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37329793

RESUMO

Most aged tea has superior sensory qualities and good health benefits. The content of organic acids determines of the quality and biological effects of aged tea, but there are no reports of the effect of storage on the composition and relative proportion of acidic compounds in black tea. This study analyzed and compared the sourness and metabolite profile of black tea produced in 2015, 2017, 2019 and 2021 using pH determination and UPLC-MS/MS. In total, 28 acidic substances were detected, with 17 organic acids predominating. The pH of black tea decreased significantly during storage from pH 4.64 to pH 4.25 with significantly increased in l-ascorbic acid, salicylic acid, benzoic acid and 4-hydroxybenzoic acid. The metabolic pathways ascorbate biosynthesis, salicylate degradation, toluene degradation, etc. were mainly enriched. These findings provide a theoretical basis to regulate the acidity of aged black tea.


Assuntos
Camellia sinensis , Chá , Chá/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Camellia sinensis/química , Metabolômica , Folhas de Planta/química
11.
Crit Rev Food Sci Nutr ; 63(20): 4757-4784, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34898343

RESUMO

Tea flavonoids are widely recognized as critical flavor contributors and crucial health-promoting bioactive compounds, and have long been the focus of research worldwide in food science. The aim of this review paper is to summarize the major progress in tea flavonoid chemistry, their dynamics of constituents and concentrations during tea processing as well as storage, and their health functions studied between 2001 and 2021. Moreover, the utilization of tea flavonoids in the human body has also been discussed for a detailed understanding of their uptake, metabolism, and interaction with the gut microbiota. Many novel tea flavonoids have been identified, including novel A- and B-ring substituted flavan-3-ol derivatives, condensed and oxidized flavan-3-ol derivatives, and glycosylated and methylated flavonoids, and are found to be closely associated with the characteristic color, flavor, and health benefits of tea. Flavoalkaloids exist widely in various teas, particularly 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols. Tea flavonoids behave significantly difference in constituents and concentrations depending on tea cultivars, plantation conditions, multiple stresses, the tea-specified manufacturing steps, and even the long-term storage period. Tea flavonoids exhibit multiple health-promoting effects, particularly their anti-inflammatory in alleviating metabolic syndromes. Interaction of tea flavonoids with the gut microbiota plays vital roles in their health function.


Assuntos
Camellia sinensis , Chá , Humanos , Chá/química , Camellia sinensis/química , Flavonoides/análise
12.
Biomed Pharmacother ; 158: 114136, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535201

RESUMO

The gut-liver axis is a bidirectional relationship between the gut with its microbiota and the hepatic. Ulcerative colitis (UC) disrupts the intestinal barrier and influx of intestinal microorganisms and their products into the liver, which trigger liver injury. Tea consumption is associated with a low incidence of UC in Asian countries. In this study, we revealed the mechanisms of six types of tea water extracts (TWEs) obtained from the leaves of Camellia sinensis on the dextran sodium sulfate (DSS)-induced colitis and liver injury in mice. The TWEs significantly restored mucin production and increased the expression levels of tight junction (TJ) proteins such as zonula occludens-1 (ZO-1), occluding, and claudin-1. In addition, TWEs also reduced the levels of pro-inflammatory cytokines in the colon and liver tissue by inactivating the NF-κB/NLRP3. Moreover, TEWs treatment promoted the integrity of the intestinal barrier to reduce serum lipopolysaccharide (LPS) levels, thereby reducing liver injury caused by intestinal microbial translocation and LPS induction. Analysis of 16 S rRNA microbial sequencing revealed that tea water extracts (TWEs) restored the DSS-induced gut dysbiosis. Interestingly, our results showed that the degree of fermentation of tea leaves was negatively associated with the alleviation of DSS-induced colitis effects, and there was also an overall negative trend with colitis-induced liver injury, except for black tea. Taken together, tea consumption mitigated DSS-induced colitis and liver injury in mice via inhibiting the TLR4/NF-κB/NLRP3 inflammasome pathway.


Assuntos
Camellia sinensis , Colite Ulcerativa , Colite , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Inflamassomos/metabolismo , Lipopolissacarídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Chá , Proteínas de Junções Íntimas/metabolismo , Receptor 4 Toll-Like
13.
Molecules ; 27(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36500365

RESUMO

Food extract supplements, with high functional activity and low side effects, play a recognized role in the adjunctive therapy of human colorectal cancer. The present study reported a new functional beverage, which is a type of Chinese Hakka stir-fried green tea (HSGT) aged for several years. The extracts of the lyophilized powder of five HSGT samples with different aging periods were analyzed with high-performance liquid chromatography. The major components of the extract were found to include polyphenols, catechins, amino acids, catechins, gallic acid and caffeine. The tea extracts were also investigated for their therapeutic activity against human colorectal cancer cells, HT-29, an epithelial cell isolated from the primary tumor. The effect of different aging time of the tea on the anticancer potency was compared. Our results showed that, at the cellular level, all the extracts of the aged teas significantly inhibited the proliferation of HT-29 in a concentration-dependent manner. In particular, two samples prepared in 2015 (15Y, aged for 6 years) and 2019 (19Y, aged for 2 years) exhibited the highest inhibition rate for 48 h treatment (cell viability was 50% at 0.2 mg/mL). Further, all the aged tea extracts examined were able to enhance the apoptosis of HT-29 cells (apoptosis rate > 25%) and block the transition of G1/S phase (cell-cycle distribution (CSD) from <20% to >30%) population to G2/M phase (CSD from nearly 30% to nearly 10%) at 0.2 mg/mL for 24 h or 48 h. Western blotting results also showed that the tea extracts inhibited cyclin-dependent kinases 2/4 (CDK2, CDK4) and CylinB1 protein expression, as well as increased poly ADP-ribose polymerase (PRAP) expression and Bcl2-associated X (Bax)/B-cell lymphoma-2 (Bcl2) ratio. In addition, an upstream signal of one of the above proteins, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signalling, was found to be involved in the regulation, as evidenced by the inhibition of phosphorylated PI3K and AKT by the extracts of the aged tea. Therefore, our study reveals that traditional Chinese aged tea (HSGT) may inhibit colon cancer cell proliferation, cell-cycle progression and promoted apoptosis of colon cancer cells by inactivating PI3K/AKT signalling.


Assuntos
Camellia sinensis , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Apoptose , Camellia sinensis/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Chá/química
14.
Anal Chim Acta ; 1229: 340360, 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36156222

RESUMO

Infectious diseases caused by viruses have attracted global concern owing to their rapid spread and catastrophic consequences. Therefore, developing fast and reliable on-site virus detection methods is essential for the prevention and treatment of virus-related diseases. In this study, immunoassays on a membrane, combining virus preconcentration with nanoparticle-based signal amplification, were used to realize the rapid and accurate visual detection of viruses. The biotin-streptavidin scaffolds for target virus preconcentration were established on a membrane, and subsequently a Zika aptamer (Apt) immobilized on the membrane recognized and captured the nonstructural protein 1 of Zika virus (ZIKV-NS1). The probe for detection was synthesized by conjugating the Zika Apt with a high level of horseradish peroxidase on gold nanoparticles. The ZIKV-loaded membrane was incubated with the probes, and the viral signal was amplified as the signal of horseradish peroxidase. In the presence of 3,3,5',5'-tetramethyl benzidine and hydrogen peroxide, the green color of the probe-coated membrane indicated the level of ZIKV-NS1. Our developed method could reach a detection limit of 5 ng mL-1, and the whole procedure could be completed within 1 h. Analyses of rabbit serum and environmental water samples demonstrated that an immunoassay-based approach on the membrane could accurately determine the level of ZIKV-NS1 against the complicated matrix. Our results suggest that this virus detection method has a high potential for application in clinical and environmental settings.


Assuntos
Nanopartículas Metálicas , Infecção por Zika virus , Zika virus , Animais , Biotina , Dimaprit/análogos & derivados , Ouro/química , Peroxidase do Rábano Silvestre , Peróxido de Hidrogênio , Nanopartículas Metálicas/química , Coelhos , Estreptavidina , Proteínas não Estruturais Virais/análise , Água , Zika virus/química , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/prevenção & controle
15.
Chin Herb Med ; 14(3): 449-458, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36118010

RESUMO

Objective: In this study, black tea and Citrus maxima (BT-CM), yellow tea and C. maxima (YT-CM), green tea and C. maxima (GT-CM) as subjects, the active ingredient content and antioxidant activity of three tea and C. maxima (T-CM) were analyzed. The effects of three T-CMs on apoptosis of liver cells in vitro and its mechanism were further explored. Methods: National standard method and HPLC were used for active ingredient analysis. MTT, cell flow cytometry and Western blot were used to analyze the effects of three T-CMs on cell proliferation, apoptosis, and its underlying molecular mechanism. Results: The content of tea polyphenols, free amino acids, ratio of polyphenols and amino acids, ester catechins, non-ester catechins and caffeine in YT-CM and GT-CM was significantly higher than that of BT-CM. The in vitro antioxidant capacity of YT-CM and GT-CM was also significantly stronger than that of BT-CM. Three T-CMs had the effects of inhibiting proliferation, arresting cell cycle and inducing apoptosis in HepG2 and Bel7402 cells, especially YT-CM and GT-CM. Western blot analysis showed three T-CMs activated PI3K/AKT/mTOR signaling pathway and regulated the expression levels of apoptosis-related proteins Bax, Bcl-2 and Caspase-3/9. YT-CM and GT-CM had better ability to change the signal pathway than BT-CM. Conclusion: In short, T-CMs, which combined different degrees of fermentation tea with C. maxima, were rich in nutrients and biologically active substances. T-CMs, especially YT-CM and GT-CM, are healthy drinks that help to prevent and treat liver cancer.

16.
Food Nutr Res ; 662022.
Artigo em Inglês | MEDLINE | ID: mdl-35844955

RESUMO

Background: The health benefits of tea are as diverse including the reduction of uric acid levels. Xanthine oxidase is the most directly mediated enzyme in the production of uric acid. Objective: To explore the inhibitory effects of different teas and its main bioactive components on the production of uric acid. Design: Experimental study. The experiments were conducted in vitro using human immortalized normal liver cell line HL-7702 (L-02). Results: The inhibition of the xanthine oxidase activities and the expression level of xanthine dehydrogenase mRNA stimulated in the hyperuric hepatocyte cell model showed that the unfermented green tea and th1e lightly fermented yellow tea, white tea, and oolong tea significantly stronger than the highly fermented black tea and dark tea. The main bioactive compound, gallic acid, showed the strongest inhibitory effect on uric acid production, followed by tea polyphenols and theaflavins. Discussion: All teas exhibited significant inhibition of xanthine oxidase activities, and the degree of fermentation of tea may be inversely proportional to its ability to inhibit the production of uric acid. Compared with tea polyphenols rich in tea, gallic acid may be a more potential uric acid-lowering component. Conclusion: In this article, we first compared the effects of six traditional Chinese tea made from a single variety in stabilizing the synthesis of uric acid and found that the lighter the fermentation, the greater the potential for inhibiting the production of uric acid. Furthermore, we analyzed the inhibitory effects of its main biochemical active ingredients and found that the inhibitory effects of polyphenols rich in lightly fermented tea were significantly stronger than caffeine rich in highly fermented tea. Our findings will be helpful for people to choose a proper tea for alleviating hyperuricemia and provide a scientific basis for uric acid-lowering tea processing.

17.
Nutrients ; 14(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35893891

RESUMO

Liver injury is a significant public health issue nowadays. Shibi tea is a non-Camellia tea prepared from the dried leaves of Adinandra nitida, one of the plants with the greatest flavonoid concentration, with Camellianin A (CA) being the major flavonoid. Shibi tea is extensively used in food and medicine and has been found to provide a variety of health advantages. The benefits of Shibi tea and CA in preventing liver injury have not yet been investigated. The aim of this study was to investigate the hepatoprotective effects of extract of Shibi tea (EST) and CA in mice with carbon tetrachloride (CCl4)-induced acute liver injury. Two different concentrations of EST and CA were given to model mice by gavage for 3 days. Treatment with two concentrations of EST and CA reduced the CCl4-induced elevation of the liver index, liver histopathological injury score, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Western blotting and immunohistochemical analysis demonstrated that EST and CA regulated the oxidative stress signaling pathway protein levels of nuclear factor E2-related factor 2 (Nrf2)/heme-oxygenase-1 (HO-1), the expression of inflammatory cytokines, the phosphorylated nuclear factor-kappaB p65 (p-NF-κB)/nuclear factor-kappaB p65 (NF-κB) ratio, the phospho-p44/42 mitogen-activated protein kinase (p-MAPK), and the apoptosis-related protein levels of BCL2-associated X (Bax)/B cell leukemia/lymphoma 2 (Bcl2) in the liver. Taken together, EST and CA can protect against CCl4-induced liver injury by exerting antioxidative stress, anti-inflammation, and anti-apoptosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Flavonoides , Chás de Ervas , Animais , Apoptose , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Flavonoides/farmacologia , Inflamação/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais
18.
Nutrients ; 14(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35807846

RESUMO

Hyperuricemia (HUA) is a metabolic disease that threatens human health. Tea is a healthy beverage with an abundance of benefits. This study revealed the uric acid-lowering efficacy of six types of tea water extracts (TWEs) on HUA in mice. The results revealed that under the intervention of TWEs, the expression of XDH, a key enzyme that produces uric acid, was significantly downregulated in the liver. TWE treatment significantly upregulated the expression of uric acid secretion transporters ABCG2, OAT1, and OAT3, and downregulated the expression of uric acid reabsorption transporter URAT1 in the kidney. Furthermore, HUA-induced oxidative stress could be alleviated by upregulating the Nrf2/HO-1 pathway. The intervention of TWEs also significantly upregulated the expression of the intestinal ABCG2 protein. On the other hand, TWE intervention could significantly upregulate the expression of intestinal ABCG2 and alleviate HUA by modulating the gut microbiota. Taken together, tea can comprehensively regulate uric acid metabolism in HUA mice. Interestingly, we found that the degree of fermentation of tea was negatively correlated with the uric acid-lowering effect. The current study indicated that tea consumption may have a mitigating effect on the HUA population and provided a basis for further research on the efficacy of tea on the dosage and mechanism of uric acid-lowering effects in humans.


Assuntos
Camellia sinensis , Microbioma Gastrointestinal , Hiperuricemia , Animais , Hiperuricemia/tratamento farmacológico , Redes e Vias Metabólicas , Camundongos , Chá , Ácido Úrico/metabolismo
19.
Biomed Pharmacother ; 152: 113255, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35689859

RESUMO

Jasminum grandiflorum L. (JG) is a medicinal plant containing many bioactive ingredients. Herein, we analyzed the effects of four different extracts and two compounds of JG on acute liver injury caused by carbon tetrachloride (CCl4) and underlying molecular mechanisms. 7 weeks old C57BL/6 male mice were used to establish a liver injury model by injecting with 1% CCl4, 10 mL/kg ip. Four different extracts and two compounds of JG were given to mice by gavage for 3 days. Clinical and histological chemistry assays were performed to assess liver injury. Moreover, hepatic oxidative stress and inflammation related markers were determined by immunohistochemistry and western blotting. As a result, JG extracts and two functional components showed different degree of protect effects against CCl4-induced liver injury by the decrease of elevated serum transaminases and liver index, and the attenuation of histopathological changes in mice, among which JG extracted with petroleum ether (PET) had the most significant effect. In addition, PET remarkably alleviated hepatic oxidative stress and inflammation. Further studies revealed that PET significantly inhibited the TNF-α expression, signal pathway expression, NF-κB p65 and inflammatory factors IL-1ß and IL-6 expression in CCl4-induced liver injury mice. Nevertheless, hydroxytyrosol (HT) alleviated liver injury by reducing oxidative stress. Apart from PET extract, other extracts of JG can inhibit cytochrome CYP2E1 expression to protect liver tissue. These findings suggest that the extracts and its components of JG possesses the potential protective effects against CCl4-induced liver injury in mice by exerting antioxidative stress and anti-inflammation.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Jasminum , Animais , Tetracloreto de Carbono/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/complicações , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Citocromo P-450 CYP2E1/metabolismo , Inflamação/metabolismo , Jasminum/metabolismo , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
20.
Front Nutr ; 9: 848918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677547

RESUMO

Acute alcoholic intoxication (AAI) is a pathological process of multiple system damage caused by a large amount of alcohol, especially in the liver. Although tea extracts alleviate AAI and alcohol-induced liver damage, the mechanisms underlying the protective actions of different types of Chinese tea are unclear. In this study, the AAI mice model was used to explore the functions and mechanisms of six types of tea extract (WEATs) in alleviating AAI. The losing righting reflexes of mice were evaluated to assess the effects of the WEATs on AAI. The levels of the ethanol metabolism enzymes (ADH, ALDH2, CYP2E1), the oxidative stress-related indicators (NRF-2, HO-1, SOD, GSH, CAT, and TG) and the inflammatory factors (TNF-α, iNOS, IL-6, and IL-10) were determined. Black tea and dark tea significantly shortened the sleep time (duration of the loss of righting reflex) and had a good sobering effect. Green tea and oolong tea had the dual effect of prolonging tolerance time (time of losing righting reflex) and shortening sleep time. While white tea had the most significant effect on prolonging tolerance time but with no obvious sobering effect. Black tea, dark tea, and oolong tea significantly up-regulated ADH and ALDH2, and down-regulated CYP2E1. Green tea and white tea significantly increased the levels of Nrf2, GSH, and CAT. Black tea, dark tea and oolong tea markedly increased the levels of HO-1, IL-10, and inhibited TG. Therefore, it is possible that black tea, dark tea and oolong tea reduced AAI by increasing ethanol metabolism, suppressing oxidative stress and inflammation. While green tea was mainly by regulating oxidative stress. White tea may prolong the tolerance time by increasing ethanol metabolism and reducing oxidative stress. Different types of tea have specific chemical compositions and can alleviate AAI. In conclusion, despite variations in the composition and mechanism of action, tea is a potent natural product to alleviate a hangover and protect the liver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...